Installation
!pip install TEF -U
import TEF
TEF.__version__
'0.7.7'
Load dataset
titanic_raw = TEF.load_dataset('titanic_raw')
This famous dataset is merged from Kaggle and seaborn.
We usually start from head()
, but is it possible to understand a dataset with only 6 rows?
titanic_raw.head()
survived | passenger_id | name | pclass | age | birth | sibsp | parch | fare | who | deck | embark_town | alone | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | False | 1 | Braund, Mr. Owen Harris | 3 | 22 | 1890-04-19 | 1 | 0 | 7.25 | man | nan | Southampton | False |
1 | True | 2 | Cumings, Mrs. John Bradley (Florence Briggs Thayer) | 1 | 38 | 1874-04-23 | 1 | 0 | 71.2833 | woman | C | Cherbourg | False |
2 | True | 3 | Heikkinen, Miss. Laina | 3 | 26 | 1886-04-20 | 0 | 0 | 7.925 | woman | nan | Southampton | True |
3 | True | 4 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | 1 | 35 | 1877-04-22 | 1 | 0 | 53.1 | woman | C | Southampton | False |
4 | False | 5 | Allen, Mr. William Henry | 3 | 35 | 1877-04-22 | 0 | 0 | 8.05 | man | nan | Southampton | True |
Set dtypes
titanic = TEF.auto_set_dtypes(titanic_raw)
before dtypes: bool(2), float64(2), int64(4), object(5)
after dtypes: bool(2), category(3), datetime64[ns](1), float64(2), int64(4), object(1)
possible identifier cols: 1 passenger_id
consider using set_object=[1]
possible category cols: 3 pclass (3 levls), 6 sibsp (7 levls), 7 parch (7 levls)
consider using set_category=[3, 6, 7]
If you accept the suggestion,
titanic = TEF.auto_set_dtypes(titanic_raw, set_object=[1], verbose=0)
Generating metadata
Just pass any dataset you are working on to TEF.dfmeta
.
TEF.dfmeta(titanic)
col name | idx | dtype | NaNs | unique counts | summary | summary plot | possible NaNs | possible dup lev | row 21 | row 35 | row 605 |
---|---|---|---|---|---|---|---|---|---|---|---|
survived | 0 | bool | 0 0% |
2 0% |
False 62% True 38% |
True | False | False | |||
passenger_id | 1 | object | 0 0% |
891 100% |
other 100% | 22 | 36 | 606 | |||
name | 2 | object | 0 0% |
891 100% |
other 100% | Beesley, Mr. Lawrence | Holverson, Mr. Alexander Oskar | Lindell, Mr. Edvard Bengtsson | |||
pclass | 3 | int64 | 0 0% |
3 0% |
3 55% 1 24% 2 21% |
2 | 1 | 3 | |||
age | 4 | float64 | 177 20% |
89 10% |
[0.42, 20.125, 28.0, 38.0, 80.0] mean: 29.70 std: 14.53 cv: 0.49 skew: 0.39* log skew: -2.30 |
34 | 42 | 36 | |||
birth | 5 | datetime64[ns] | 177 20% |
72 8% |
1832-05-03 1874-04-23 1884-04-20 1892-04-18 1912-04-14 |
1878-04-22 00:00:00 | 1870-04-24 00:00:00 | 1876-04-22 00:00:00 | |||
sibsp | 6 | int64 | 0 0% |
7 1% |
[0.0, 0.0, 0.0, 1.0, 8.0] mean: 0.52 std: 1.10 cv: 2.11 skew: 3.69* log skew: 1.67 |
0 | 1 | 1 | |||
parch | 7 | int64 | 0 0% |
7 1% |
[0.0, 0.0, 0.0, 0.0, 6.0] mean: 0.38 std: 0.81 cv: 2.11 skew: 2.74* log skew: 0.93 |
0 | 0 | 0 | |||
fare | 8 | float64 | 0 0% |
248 28% |
[0.0, 7.9104, 14.4542, 31.0, 512.3292] mean: 32.20 std: 49.69 cv: 1.54 skew: 4.78* log skew: 0.90 |
13 | 52 | 15.55 | |||
who | 9 | category | 0 0% |
3 0% |
man 60% woman 30% child 9% |
(man, woman) | man | man | man | ||
deck | 10 | category | 688 77% |
8 1% |
nan 77% C 7% B 5% D 4% E 4% A 2% F 1% G 0% |
D | nan | nan | |||
embark_town | 11 | category | 2 0% |
4 0% |
Southampton 72% Cherbourg 19% Queenstown 9% nan 0% |
Southampton | Southampton | Southampton | |||
alone | 12 | bool | 0 0% |
2 0% |
True 60% False 40% |
True | False | False |
Have a description dictionary prepared and start filling it in.
TEF.get_desc_template(titanic)
desc = {
"survived" : "",
"passenger_id": "",
"name" : "",
"pclass" : "",
"age" : "",
"birth" : "",
"sibsp" : "",
"parch" : "",
"fare" : "",
"who" : "",
"deck" : "",
"embark_town" : "",
"alone" : ""
}
Or, I personally like a separate file so that I can fill it in another window.
TEF.get_desc_template_file(titanic)
'desc.py saved'
Use %run desc.py
to load it back on jupyter notebook. But here we will use inline desc for the sake of demo.
And call TEF.dfmeta
again. Now you will have a column explaining the data.
desc = {
"survived" : "Survived (1) or died (0)",
"passenger_id": "Unique ID of the passenger",
"name" : "Passenger's name",
"pclass" : "Passenger's class (1st, 2nd, or 3rd)",
"age" : "Passenger's age",
"birth" : "Created from minusing the titanic happened date from Age",
"sibsp" : "Number of siblings/spouses aboard the Titanic",
"parch" : "Number of parents/children aboard the Titanic",
"fare" : "Fare paid for ticket",
"who" : "Whether the passenger is man, woman, or child",
"deck" : "",
"embark_town" : "Where the passenger got on the ship (C - Cherbourg, S - Southampton, Q = Queenstown)",
"alone" : ""
}
TEF.dfmeta(titanic, description=desc)
col name | idx | dtype | description | NaNs | unique counts | summary | summary plot | possible NaNs | possible dup lev | row 304 | row 629 | row 680 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
survived | 0 | bool | Survived (1) or died (0) | 0 0% |
2 0% |
False 62% True 38% |
False | False | False | |||
passenger_id | 1 | object | Unique ID of the passenger | 0 0% |
891 100% |
other 100% | 305 | 630 | 681 | |||
name | 2 | object | Passenger’s name | 0 0% |
891 100% |
other 100% | Williams, Mr. Howard Hugh “Harry” | O’Connell, Mr. Patrick D | Peters, Miss. Katie | |||
pclass | 3 | int64 | Passenger’s class (1st, 2nd, or 3rd) | 0 0% |
3 0% |
3 55% 1 24% 2 21% |
3 | 3 | 3 | |||
age | 4 | float64 | Passenger’s age | 177 20% |
89 10% |
[0.42, 20.125, 28.0, 38.0, 80.0] mean: 29.70 std: 14.53 cv: 0.49 skew: 0.39* log skew: -2.30 |
nan | nan | nan | |||
birth | 5 | datetime64[ns] | Created from minusing the titanic happened date from Age | 177 20% |
72 8% |
1832-05-03 1874-04-23 1884-04-20 1892-04-18 1912-04-14 |
nan | nan | nan | |||
sibsp | 6 | int64 | Number of siblings/spouses aboard the Titanic | 0 0% |
7 1% |
[0.0, 0.0, 0.0, 1.0, 8.0] mean: 0.52 std: 1.10 cv: 2.11 skew: 3.69* log skew: 1.67 |
0 | 0 | 0 | |||
parch | 7 | int64 | Number of parents/children aboard the Titanic | 0 0% |
7 1% |
[0.0, 0.0, 0.0, 0.0, 6.0] mean: 0.38 std: 0.81 cv: 2.11 skew: 2.74* log skew: 0.93 |
0 | 0 | 0 | |||
fare | 8 | float64 | Fare paid for ticket | 0 0% |
248 28% |
[0.0, 7.9104, 14.4542, 31.0, 512.3292] mean: 32.20 std: 49.69 cv: 1.54 skew: 4.78* log skew: 0.90 |
8.05 | 7.7333 | 8.1375 | |||
who | 9 | category | Whether the passenger is man, woman, or child | 0 0% |
3 0% |
man 60% woman 30% child 9% |
(man, woman) | man | man | woman | ||
deck | 10 | category | 688 77% |
8 1% |
nan 77% C 7% B 5% D 4% E 4% A 2% F 1% G 0% |
nan | nan | nan | ||||
embark_town | 11 | category | Where the passenger got on the ship (C – Cherbourg, S – Southampton, Q = Queenstown) | 2 0% |
4 0% |
Southampton 72% Cherbourg 19% Queenstown 9% nan 0% |
Southampton | Queenstown | Queenstown | |||
alone | 12 | bool | 0 0% |
2 0% |
True 60% False 40% |
True | True | True |
See the relations between target and variables
TEF.plot_1var_by_cat_y(titanic, 'survived')
1, passenger_id, object, has 891 levels, skipped plotting
2, name, object, has 891 levels, skipped plotting
NaNs: 0
NaNs: 19.87%
5 not yet for datetime
NaNs: 0
NaNs: 0
NaNs: 0
Fit models
Now fit default classification models with one line.
TEF.fit(titanic, 'survived')
original X:
shape: (891, 12)
dtypes: bool(1), category(3), datetime64[ns](1), float64(2), int64(3), object(2)
processed X:
shape: (891, 13)
dtypes: bool(1), category(3), float64(6), int64(3)
y:
dummy X:
shape: (891, 23)
dtypes: bool(1), float64(6), int64(3), uint8(13)
classification result:
accuracy : 81.26
false positive: 8.08
false negative: 10.66
f1 : 74.74
Put fitted feature importance into dfmeta
If it looks okay, you can save the feature importance and pass it to dfmeta to have another column. Or you can train your own model and pass the feature importance here.
feat_imp = TEF.fit(titanic, 'survived', verbose=0, return_agg_feat_imp=True)
TEF.dfmeta(titanic, description=desc, fitted_feat_imp=feat_imp)
col name | idx | dtype | description | NaNs | unique counts | summary | summary plot | fitted feature importance | possible NaNs | possible dup lev | row 158 | row 173 | row 790 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
survived | 0 | bool | Survived (1) or died (0) | 0 0% |
2 0% |
False 62% True 38% |
False | False | False | ||||
passenger_id | 1 | object | Unique ID of the passenger | 0 0% |
891 100% |
other 100% | 159 | 174 | 791 | ||||
name | 2 | object | Passenger’s name | 0 0% |
891 100% |
other 100% | Smiljanic, Mr. Mile | Sivola, Mr. Antti Wilhelm | Keane, Mr. Andrew “Andy” | ||||
pclass | 3 | int64 | Passenger’s class (1st, 2nd, or 3rd) | 0 0% |
3 0% |
3 55% 1 24% 2 21% |
2/10 0.24 27% | 3 | 3 | 3 | |||
age | 4 | float64 | Passenger’s age | 177 20% |
89 10% |
[0.42, 20.125, 28.0, 38.0, 80.0] mean: 29.70 std: 14.53 cv: 0.49 skew: 0.39* log skew: -2.30 |
7/10 0.02 3% | nan | 21 | nan | |||
birth | 5 | datetime64[ns] | Created from minusing the titanic happened date from Age | 177 20% |
72 8% |
1832-05-03 1874-04-23 1884-04-20 1892-04-18 1912-04-14 |
8/10 0.02 2% | NaT | 1891-04-19 00:00:00 | NaT | |||
sibsp | 6 | int64 | Number of siblings/spouses aboard the Titanic | 0 0% |
7 1% |
[0.0, 0.0, 0.0, 1.0, 8.0] mean: 0.52 std: 1.10 cv: 2.11 skew: 3.69* log skew: 1.67 |
6/10 0.02 3% | 0 | 0 | 0 | |||
parch | 7 | int64 | Number of parents/children aboard the Titanic | 0 0% |
7 1% |
[0.0, 0.0, 0.0, 0.0, 6.0] mean: 0.38 std: 0.81 cv: 2.11 skew: 2.74* log skew: 0.93 |
9/10 0.02 2% | 0 | 0 | 0 | |||
fare | 8 | float64 | Fare paid for ticket | 0 0% |
248 28% |
[0.0, 7.9104, 14.4542, 31.0, 512.3292] mean: 32.20 std: 49.69 cv: 1.54 skew: 4.78* log skew: 0.90 |
4/10 0.03 4% | 8.6625 | 7.925 | 7.75 | |||
who | 9 | category | Whether the passenger is man, woman, or child | 0 0% |
3 0% |
man 60% woman 30% child 9% |
1/10 0.44 49% | (man, woman) | man | man | man | ||
deck | 10 | category | 688 77% |
8 1% |
nan 77% C 7% B 5% D 4% E 4% A 2% F 1% G 0% |
3/10 0.05 5% | nan | nan | nan | ||||
embark_town | 11 | category | Where the passenger got on the ship (C – Cherbourg, S – Southampton, Q = Queenstown) | 2 0% |
4 0% |
Southampton 72% Cherbourg 19% Queenstown 9% nan 0% |
5/10 0.03 3% | Southampton | Southampton | Queenstown | |||
alone | 12 | bool | 0 0% |
2 0% |
True 60% False 40% |
10/10 0.01 2% | True | True | True |
Standardize metadata
After you clean and look into those dirty values, you probably don’t need “possible NaNs”, “possible dub lev” and those samples there. Add another argument stadard=True
to remove them and generate the final standardize metadata.
meta = TEF.dfmeta(titanic, description=desc, fitted_feat_imp=feat_imp, standard=True)
meta
col name | idx | dtype | description | NaNs | unique counts | summary | summary plot | fitted feature importance |
---|---|---|---|---|---|---|---|---|
survived | 0 | bool | Survived (1) or died (0) | 0 0% |
2 0% |
False 62% True 38% |
||
passenger_id | 1 | object | Unique ID of the passenger | 0 0% |
891 100% |
other 100% | ||
name | 2 | object | Passenger’s name | 0 0% |
891 100% |
other 100% | ||
pclass | 3 | int64 | Passenger’s class (1st, 2nd, or 3rd) | 0 0% |
3 0% |
3 55% 1 24% 2 21% |
2/10 0.24 27% | |
age | 4 | float64 | Passenger’s age | 177 20% |
89 10% |
[0.42, 20.125, 28.0, 38.0, 80.0] mean: 29.70 std: 14.53 cv: 0.49 skew: 0.39* log skew: -2.30 |
7/10 0.02 3% | |
birth | 5 | datetime64[ns] | Created from minusing the titanic happened date from Age | 177 20% |
72 8% |
1832-05-03 1874-04-23 1884-04-20 1892-04-18 1912-04-14 |
8/10 0.02 2% | |
sibsp | 6 | int64 | Number of siblings/spouses aboard the Titanic | 0 0% |
7 1% |
[0.0, 0.0, 0.0, 1.0, 8.0] mean: 0.52 std: 1.10 cv: 2.11 skew: 3.69* log skew: 1.67 |
6/10 0.02 3% | |
parch | 7 | int64 | Number of parents/children aboard the Titanic | 0 0% |
7 1% |
[0.0, 0.0, 0.0, 0.0, 6.0] mean: 0.38 std: 0.81 cv: 2.11 skew: 2.74* log skew: 0.93 |
9/10 0.02 2% | |
fare | 8 | float64 | Fare paid for ticket | 0 0% |
248 28% |
[0.0, 7.9104, 14.4542, 31.0, 512.3292] mean: 32.20 std: 49.69 cv: 1.54 skew: 4.78* log skew: 0.90 |
4/10 0.03 4% | |
who | 9 | category | Whether the passenger is man, woman, or child | 0 0% |
3 0% |
man 60% woman 30% child 9% |
1/10 0.44 49% | |
deck | 10 | category | 688 77% |
8 1% |
nan 77% C 7% B 5% D 4% E 4% A 2% F 1% G 0% |
3/10 0.05 5% | ||
embark_town | 11 | category | Where the passenger got on the ship (C – Cherbourg, S – Southampton, Q = Queenstown) | 2 0% |
4 0% |
Southampton 72% Cherbourg 19% Queenstown 9% nan 0% |
5/10 0.03 3% | |
alone | 12 | bool | 0 0% |
2 0% |
True 60% False 40% |
10/10 0.01 2% |
Generate a final metadata
Now everything is clean and neat. You can export it to a HTML file. So that you can distribute it or just open it in another window while you are doing more stuff.
TEF.dfmeta_to_htmlfile(meta, filename='titanic_dfmeta.html', head='titanic metadata')
'titanic_dfmeta.html saved'
Or if you want the source HTML code to paste it somewhere.
print(meta.data)
<style type="text/css" >
#T_069198c8_cfa6_11e9_9138_5c5f67a418f1row0_col0 {
background-color: white;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row0_col1 {
border: 1px solid white;
background-color: #e7fefe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row0_col2 {
border: 1px solid white;
background-color: #e7fefe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row0_col3 {
border: 1px solid white;
background-color: #e7fefe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row0_col4 {
border: 1px solid white;
background-color: #e7fefe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row0_col5 {
border: 1px solid white;
background-color: #e7fefe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row0_col6 {
border: 1px solid white;
background-color: #e7fefe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row0_col7 {
border: 1px solid white;
background-color: #e7fefe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row0_col8 {
border: 1px solid white;
background-color: #e7fefe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row1_col0 {
background-color: white;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row1_col1 {
border: 1px solid white;
background-color: #f2f2f2;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row1_col2 {
border: 1px solid white;
background-color: #f2f2f2;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row1_col3 {
border: 1px solid white;
background-color: #f2f2f2;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row1_col4 {
border: 1px solid white;
background-color: #f2f2f2;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row1_col5 {
border: 1px solid white;
background-color: #f2f2f2;
color: blue;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row1_col6 {
border: 1px solid white;
background-color: #f2f2f2;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row1_col7 {
border: 1px solid white;
background-color: #f2f2f2;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row1_col8 {
border: 1px solid white;
background-color: #f2f2f2;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row2_col0 {
background-color: white;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row2_col1 {
border: 1px solid white;
background-color: #f2f2f2;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row2_col2 {
border: 1px solid white;
background-color: #f2f2f2;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row2_col3 {
border: 1px solid white;
background-color: #f2f2f2;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row2_col4 {
border: 1px solid white;
background-color: #f2f2f2;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row2_col5 {
border: 1px solid white;
background-color: #f2f2f2;
color: blue;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row2_col6 {
border: 1px solid white;
background-color: #f2f2f2;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row2_col7 {
border: 1px solid white;
background-color: #f2f2f2;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row2_col8 {
border: 1px solid white;
background-color: #f2f2f2;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row3_col0 {
background-color: white;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row3_col1 {
border: 1px solid white;
background-color: #fefee7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row3_col2 {
border: 1px solid white;
background-color: #fefee7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row3_col3 {
border: 1px solid white;
background-color: #fefee7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row3_col4 {
border: 1px solid white;
background-color: #fefee7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row3_col5 {
border: 1px solid white;
background-color: #fefee7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row3_col6 {
border: 1px solid white;
background-color: #fefee7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row3_col7 {
border: 1px solid white;
background-color: #fefee7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row3_col8 {
border: 1px solid white;
background-color: #fefee7;
font-weight: bold;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row4_col0 {
background-color: white;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row4_col1 {
border: 1px solid white;
background-color: #fef2e7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row4_col2 {
border: 1px solid white;
background-color: #fef2e7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row4_col3 {
border: 1px solid white;
background-color: #fef2e7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row4_col4 {
border: 1px solid white;
background-color: #fef2e7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row4_col5 {
border: 1px solid white;
background-color: #fef2e7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row4_col6 {
border: 1px solid white;
background-color: #fef2e7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row4_col7 {
border: 1px solid white;
background-color: #fef2e7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row4_col8 {
border: 1px solid white;
background-color: #fef2e7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row5_col0 {
background-color: white;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row5_col1 {
border: 1px solid white;
background-color: #e7feee;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row5_col2 {
border: 1px solid white;
background-color: #e7feee;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row5_col3 {
border: 1px solid white;
background-color: #e7feee;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row5_col4 {
border: 1px solid white;
background-color: #e7feee;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row5_col5 {
border: 1px solid white;
background-color: #e7feee;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row5_col6 {
border: 1px solid white;
background-color: #e7feee;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row5_col7 {
border: 1px solid white;
background-color: #e7feee;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row5_col8 {
border: 1px solid white;
background-color: #e7feee;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row6_col0 {
background-color: white;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row6_col1 {
border: 1px solid white;
background-color: #fefee7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row6_col2 {
border: 1px solid white;
background-color: #fefee7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row6_col3 {
border: 1px solid white;
background-color: #fefee7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row6_col4 {
border: 1px solid white;
background-color: #fefee7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row6_col5 {
border: 1px solid white;
background-color: #fefee7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row6_col6 {
border: 1px solid white;
background-color: #fefee7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row6_col7 {
border: 1px solid white;
background-color: #fefee7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row6_col8 {
border: 1px solid white;
background-color: #fefee7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row7_col0 {
background-color: white;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row7_col1 {
border: 1px solid white;
background-color: #fefee7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row7_col2 {
border: 1px solid white;
background-color: #fefee7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row7_col3 {
border: 1px solid white;
background-color: #fefee7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row7_col4 {
border: 1px solid white;
background-color: #fefee7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row7_col5 {
border: 1px solid white;
background-color: #fefee7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row7_col6 {
border: 1px solid white;
background-color: #fefee7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row7_col7 {
border: 1px solid white;
background-color: #fefee7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row7_col8 {
border: 1px solid white;
background-color: #fefee7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row8_col0 {
background-color: white;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row8_col1 {
border: 1px solid white;
background-color: #fef2e7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row8_col2 {
border: 1px solid white;
background-color: #fef2e7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row8_col3 {
border: 1px solid white;
background-color: #fef2e7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row8_col4 {
border: 1px solid white;
background-color: #fef2e7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row8_col5 {
border: 1px solid white;
background-color: #fef2e7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row8_col6 {
border: 1px solid white;
background-color: #fef2e7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row8_col7 {
border: 1px solid white;
background-color: #fef2e7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row8_col8 {
border: 1px solid white;
background-color: #fef2e7;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row9_col0 {
background-color: white;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row9_col1 {
border: 1px solid white;
background-color: #e7ecfe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row9_col2 {
border: 1px solid white;
background-color: #e7ecfe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row9_col3 {
border: 1px solid white;
background-color: #e7ecfe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row9_col4 {
border: 1px solid white;
background-color: #e7ecfe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row9_col5 {
border: 1px solid white;
background-color: #e7ecfe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row9_col6 {
border: 1px solid white;
background-color: #e7ecfe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row9_col7 {
border: 1px solid white;
background-color: #e7ecfe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row9_col8 {
border: 1px solid white;
background-color: #e7ecfe;
font-weight: bold;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row10_col0 {
background-color: white;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row10_col1 {
border: 1px solid white;
background-color: #e7ecfe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row10_col2 {
border: 1px solid white;
background-color: #e7ecfe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row10_col3 {
border: 1px solid white;
background-color: #e7ecfe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row10_col4 {
border: 1px solid white;
background-color: #e7ecfe;
color: red;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row10_col5 {
border: 1px solid white;
background-color: #e7ecfe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row10_col6 {
border: 1px solid white;
background-color: #e7ecfe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row10_col7 {
border: 1px solid white;
background-color: #e7ecfe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row10_col8 {
border: 1px solid white;
background-color: #e7ecfe;
font-weight: bold;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row11_col0 {
background-color: white;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row11_col1 {
border: 1px solid white;
background-color: #e7ecfe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row11_col2 {
border: 1px solid white;
background-color: #e7ecfe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row11_col3 {
border: 1px solid white;
background-color: #e7ecfe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row11_col4 {
border: 1px solid white;
background-color: #e7ecfe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row11_col5 {
border: 1px solid white;
background-color: #e7ecfe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row11_col6 {
border: 1px solid white;
background-color: #e7ecfe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row11_col7 {
border: 1px solid white;
background-color: #e7ecfe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row11_col8 {
border: 1px solid white;
background-color: #e7ecfe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row12_col0 {
background-color: white;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row12_col1 {
border: 1px solid white;
background-color: #e7fefe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row12_col2 {
border: 1px solid white;
background-color: #e7fefe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row12_col3 {
border: 1px solid white;
background-color: #e7fefe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row12_col4 {
border: 1px solid white;
background-color: #e7fefe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row12_col5 {
border: 1px solid white;
background-color: #e7fefe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row12_col6 {
border: 1px solid white;
background-color: #e7fefe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row12_col7 {
border: 1px solid white;
background-color: #e7fefe;
} #T_069198c8_cfa6_11e9_9138_5c5f67a418f1row12_col8 {
border: 1px solid white;
background-color: #e7fefe;
}</style><table id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1" ><caption>shape: (891, 13); dtypes: bool(2), category(3), datetime64[ns](1), float64(2), int64(3), object(2); memory usage: 60.7+ KB</caption><thead> <tr> <th class="col_heading level0 col0" >col name</th> <th class="col_heading level0 col1" >idx</th> <th class="col_heading level0 col2" >dtype</th> <th class="col_heading level0 col3" >description</th> <th class="col_heading level0 col4" >NaNs</th> <th class="col_heading level0 col5" >unique counts</th> <th class="col_heading level0 col6" >summary</th> <th class="col_heading level0 col7" >summary plot</th> <th class="col_heading level0 col8" >fitted feature importance</th> </tr></thead><tbody>
<tr>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row0_col0" class="data row0 col0" >survived</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row0_col1" class="data row0 col1" >0</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row0_col2" class="data row0 col2" >bool</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row0_col3" class="data row0 col3" >Survived (1) or died (0)</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row0_col4" class="data row0 col4" >0<br/> 0%</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row0_col5" class="data row0 col5" >2<br/> 0%</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row0_col6" class="data row0 col6" >False 62%<br/> True 38%</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row0_col7" class="data row0 col7" ><img src=''></td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row0_col8" class="data row0 col8" ></td>
</tr>
<tr>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row1_col0" class="data row1 col0" >passenger_id</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row1_col1" class="data row1 col1" >1</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row1_col2" class="data row1 col2" >object</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row1_col3" class="data row1 col3" >Unique ID of the passenger</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row1_col4" class="data row1 col4" >0<br/> 0%</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row1_col5" class="data row1 col5" >891<br/> 100%</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row1_col6" class="data row1 col6" >other 100%</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row1_col7" class="data row1 col7" ><img src=''></td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row1_col8" class="data row1 col8" ></td>
</tr>
<tr>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row2_col0" class="data row2 col0" >name</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row2_col1" class="data row2 col1" >2</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row2_col2" class="data row2 col2" >object</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row2_col3" class="data row2 col3" >Passenger's name</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row2_col4" class="data row2 col4" >0<br/> 0%</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row2_col5" class="data row2 col5" >891<br/> 100%</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row2_col6" class="data row2 col6" >other 100%</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row2_col7" class="data row2 col7" ><img src=''></td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row2_col8" class="data row2 col8" ></td>
</tr>
<tr>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row3_col0" class="data row3 col0" >pclass</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row3_col1" class="data row3 col1" >3</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row3_col2" class="data row3 col2" >int64</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row3_col3" class="data row3 col3" >Passenger's class (1st, 2nd, or 3rd)</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row3_col4" class="data row3 col4" >0<br/> 0%</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row3_col5" class="data row3 col5" >3<br/> 0%</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row3_col6" class="data row3 col6" >3 55%<br/> 1 24%<br/> 2 21%</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row3_col7" class="data row3 col7" ><img src=''></td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row3_col8" class="data row3 col8" >2/10 0.24 27%</td>
</tr>
<tr>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row4_col0" class="data row4 col0" >age</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row4_col1" class="data row4 col1" >4</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row4_col2" class="data row4 col2" >float64</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row4_col3" class="data row4 col3" >Passenger's age</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row4_col4" class="data row4 col4" >177<br/> 20%</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row4_col5" class="data row4 col5" >89<br/> 10%</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row4_col6" class="data row4 col6" >[0.42, 20.125, 28.0, 38.0, 80.0]<br/> mean: 29.70 std: 14.53<br/> cv: 0.49 skew: 0.39*<br/> log skew: -2.30</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row4_col7" class="data row4 col7" ><img src=''></td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row4_col8" class="data row4 col8" >7/10 0.02 3%</td>
</tr>
<tr>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row5_col0" class="data row5 col0" >birth</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row5_col1" class="data row5 col1" >5</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row5_col2" class="data row5 col2" >datetime64[ns]</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row5_col3" class="data row5 col3" >Created from minusing the titanic happened date from Age</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row5_col4" class="data row5 col4" >177<br/> 20%</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row5_col5" class="data row5 col5" >72<br/> 8%</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row5_col6" class="data row5 col6" >1832-05-03<br/> 1874-04-23<br/> 1884-04-20<br/> 1892-04-18<br/> 1912-04-14</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row5_col7" class="data row5 col7" ><img src=''></td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row5_col8" class="data row5 col8" >8/10 0.02 2%</td>
</tr>
<tr>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row6_col0" class="data row6 col0" >sibsp</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row6_col1" class="data row6 col1" >6</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row6_col2" class="data row6 col2" >int64</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row6_col3" class="data row6 col3" >Number of siblings/spouses aboard the Titanic</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row6_col4" class="data row6 col4" >0<br/> 0%</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row6_col5" class="data row6 col5" >7<br/> 1%</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row6_col6" class="data row6 col6" >[0.0, 0.0, 0.0, 1.0, 8.0]<br/> mean: 0.52 std: 1.10<br/> cv: 2.11 skew: 3.69*<br/> log skew: 1.67</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row6_col7" class="data row6 col7" ><img src=''></td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row6_col8" class="data row6 col8" >6/10 0.02 3%</td>
</tr>
<tr>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row7_col0" class="data row7 col0" >parch</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row7_col1" class="data row7 col1" >7</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row7_col2" class="data row7 col2" >int64</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row7_col3" class="data row7 col3" >Number of parents/children aboard the Titanic</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row7_col4" class="data row7 col4" >0<br/> 0%</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row7_col5" class="data row7 col5" >7<br/> 1%</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row7_col6" class="data row7 col6" >[0.0, 0.0, 0.0, 0.0, 6.0]<br/> mean: 0.38 std: 0.81<br/> cv: 2.11 skew: 2.74*<br/> log skew: 0.93</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row7_col7" class="data row7 col7" ><img src=''></td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row7_col8" class="data row7 col8" >9/10 0.02 2%</td>
</tr>
<tr>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row8_col0" class="data row8 col0" >fare</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row8_col1" class="data row8 col1" >8</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row8_col2" class="data row8 col2" >float64</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row8_col3" class="data row8 col3" >Fare paid for ticket</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row8_col4" class="data row8 col4" >0<br/> 0%</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row8_col5" class="data row8 col5" >248<br/> 28%</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row8_col6" class="data row8 col6" >[0.0, 7.9104, 14.4542, 31.0, 512.3292]<br/> mean: 32.20 std: 49.69<br/> cv: 1.54 skew: 4.78*<br/> log skew: 0.90</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row8_col7" class="data row8 col7" ><img src=''></td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row8_col8" class="data row8 col8" >4/10 0.03 4%</td>
</tr>
<tr>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row9_col0" class="data row9 col0" >who</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row9_col1" class="data row9 col1" >9</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row9_col2" class="data row9 col2" >category</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row9_col3" class="data row9 col3" >Whether the passenger is man, woman, or child</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row9_col4" class="data row9 col4" >0<br/> 0%</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row9_col5" class="data row9 col5" >3<br/> 0%</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row9_col6" class="data row9 col6" >man 60%<br/> woman 30%<br/> child 9%</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row9_col7" class="data row9 col7" ><img src=''></td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row9_col8" class="data row9 col8" >1/10 0.44 49%</td>
</tr>
<tr>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row10_col0" class="data row10 col0" >deck</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row10_col1" class="data row10 col1" >10</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row10_col2" class="data row10 col2" >category</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row10_col3" class="data row10 col3" ></td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row10_col4" class="data row10 col4" >688<br/> 77%</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row10_col5" class="data row10 col5" >8<br/> 1%</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row10_col6" class="data row10 col6" >nan 77%<br/> C 7%<br/> B 5%<br/> D 4%<br/> E 4%<br/> A 2%<br/> F 1%<br/> G 0%</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row10_col7" class="data row10 col7" ><img src=''></td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row10_col8" class="data row10 col8" >3/10 0.05 5%</td>
</tr>
<tr>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row11_col0" class="data row11 col0" >embark_town</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row11_col1" class="data row11 col1" >11</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row11_col2" class="data row11 col2" >category</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row11_col3" class="data row11 col3" >Where the passenger got on the ship (C - Cherbourg, S - Southampton, Q = Queenstown)</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row11_col4" class="data row11 col4" >2<br/> 0%</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row11_col5" class="data row11 col5" >4<br/> 0%</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row11_col6" class="data row11 col6" >Southampton 72%<br/> Cherbourg 19%<br/> Queenstown 9%<br/> nan 0%</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row11_col7" class="data row11 col7" ><img src=''></td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row11_col8" class="data row11 col8" >5/10 0.03 3%</td>
</tr>
<tr>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row12_col0" class="data row12 col0" >alone</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row12_col1" class="data row12 col1" >12</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row12_col2" class="data row12 col2" >bool</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row12_col3" class="data row12 col3" ></td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row12_col4" class="data row12 col4" >0<br/> 0%</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row12_col5" class="data row12 col5" >2<br/> 0%</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row12_col6" class="data row12 col6" >True 60%<br/> False 40%</td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row12_col7" class="data row12 col7" ><img src=''></td>
<td id="T_069198c8_cfa6_11e9_9138_5c5f67a418f1row12_col8" class="data row12 col8" >10/10 0.01 2%</td>
</tr>
</tbody></table>
That’s All!
Feel free to leave any feedback!